
ICOM6004
The level of gross domestic product per
capital of selected countries over the past
500 years.

http://visualizingeconomics.com/category/country-growth

Based on Angus Maddison

Population growth–500 years and most
of the world.

http://visualecon.wpengine.netdna-cdn.com/wp-content/

Based on Angus Maddison



The issues

Plots like these are standard when
making international comparisons. The
idea of the course is to provide you with
the tools for understanding and
evaluating the reasoning based on
constructions like these.

The issues covered in the course are
quite diverse: they range from the
question whether US per capita GDP has
followed an exponential trend to whether
per capita GDP is a useful measure of
economic performance.

Growth mathematics
We begin with some general concepts for
describing growth–e.g. of population or of
income.

If the ideas are new or you want more
information consult a book like

Ian Jacques Mathematics for
Economics and Business 6th ed. (I
think the earlier editions are better!)

Notation

Let X be the quantity of interest, X0 its
value at time 0 (e.g. year 2000), X1 its
value at time 1 (e.g. 2001) and Xt its
value at time t.

Linear growth (“simple interest”)
Here X changes by a constant amount, c,
each period. In finance this is called
simple interest. If c  0 there is growth if
c  0 decay.

Consider the first two values



X1  X0  c

X2  X1  c

 X2  X0  c  c  X0  2c.

Generalising

Xt  Xt−1  c for t  1,2, . . . and X0 fixed

 Xt  X0  tc.

This equation relating X to t is a linear
equation. Plotting X against t for the case
c  2 and X0  1 gives
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Linear trend X  1  2t

In 1 period X increases by 2, in 5 periods
X increases by 10, in 10 by 20, ..., in 50
by 50.

The growth rate defined as Xt−Xt−1
Xt−1

declines over time

Xt  Xt−1  c and Xt−1  X0  t − 1c

 Xt − Xt−1
Xt−1

 c
X0  t − 1c

.

As t increases, this ratio diminishes. If
c  0.2 and X0  1, the growth rate at
t  1 is 0.2 but for t  10 it is
0.2/1  1.8  0.07.

Geometric growth (“compound
interest”)
Instead of the change, Xt − Xt−1, being
constant each period the growth rate
might be constant. This is so for
geometric growth where the ‘dynamic’ is

X1  cX0

X2  cX1

 X2  ccX0  c2X0.

Generalising

Xt  cXt−1 for t  1,2, . . . and X0 fixed

 Xt  ctX0

The sequence of values X0,cX0,c2X0, . . .



is called a geometric sequence–giving
this kind of growth its name.

The growth rate is constant over time
because

Xt  cXt−1

 Xt − Xt−1
Xt−1

 cXt−1 − Xt−1
Xt−1

 c − 1.

Thus if c  1.2 the growth rate is 0.2 or
20%. If 0  c  1, the system decays
rather than grows.

Linear and geometric trends
If the change c  1.2 and the starting
value X0  1 then a plot of X against t
looks like
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Linear and geometric trends

X is 20% larger after 1 period, around 2.5
times larger after 5 periods, around 6
times larger after 10 and nearly 40 times
larger after 20.

Some historical figures (from Barro and
Sala-Martin Economic Growth p. 1):

Real per capita GDP in the US grew
by a factor of 8.1 from 1870 to 1990.
This corresponds to a growth rate of
1.75% per annum.
If the growth rate had been 0.75% (a
little more than that of India 1900-87)
the expansion factor would have
been 2.5.

Doubling time and the Rule of Seventy
(P&B 274)

If X is growing geometrically, how long
does is it take to double in size?

Given that Xt  ctX0 doubling requires
ct  2.

To find t, take (natural) logarithms and
solve



t lnc  ln2  t  ln2
lnc

.

Now ln2  0.693, approx. 70%. The
population of Niger is growing at 3.3%
per annum: so c  1.033, lnc  0.032 and
the doubling time, t  21 years.

The demographers’ rule of seventy is
based on noting that lnc ≈ c − 1 for c near
1 and so a good approximation to t can
be obtained by dividing 70 by the
percentage growth rate.
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For Niger the doubling time is roughly
70/3.3  21 years. By contrast the annual
growth rate for the Netherlands is 0.3%
with doubling time roughly 70/0.3  233
years.

Discrete and continuous time

I have treated time as a discrete quantity

t  0,1,2, . . .

corresponding to years or
months–January, 2000, February, 2000
etc.

BUT in my diagrams time is treated as a
continuous variable with the values
between the integers, 0,1,2, . . . , filled in.
We don’t jump from January to February
but pass through every instant of
January.

In theoretical work time is often treated
as a continuous variable. The main
advantage of ‘working in continuous time’
is that calculus can be used. See
Jacques ch. 4

The form of growth called geometric
growth in discrete time is called
exponential growth in continuous time.
The relation between X and t is given by
the exponential function

Xt  aebt for t ≥ 0.

where a and b are constants; see



Jacques 182ff.

Consider X at time t − 1. We have

Xt − 1  aebt−1  e−baebt

 Xt  ebXt − 1.

So eb corresponds to c in the discrete
treatment.

Using calculus we can get an
interpretation for b:

Xt  aebt


dX
dt

 baebt

dX
dt
 1

X  b.

The quantity dX
dt

1
X is called the

instantaneous rate of growth. For an
exponential function the rate of growth is
constant.

We can also write
dX
dt

 bX

and say that aebt is a solution of this
differential equation as ctX0 is a

solution of the difference equation

Xt  cXt−1.

Difference and differential equations can
be pursued in Jacques Additional Topic
2.

The behaviour of ratios

Suppose income, Xt, and population,
Nt, are both growing exponentially.

Xt  aebt and Nt  cedt

 Xt
Nt

 aebt

cedt
 a

c  eb−dt.

The instantaneous rate of growth of
income per head is b − d. Jacques has
more on exponential functions.

Fitting trend curves
Often we have a time series, say a
sequence of population figures like those
for the US represented in the second
figure above, and we wish to find the best
fitting trend line to the points.



The points seldom lie exactly on any
simple trend curve and it is usual to
imagine that Xt is equal to the trend value
with a random ‘error’

Xt  trend value  random term.

The trend may be linear, exponential or
some other simple function of time.

The line of best fit is the line which is
closest to the observed values in the
sense that the sum of squared vertical
deviations of point from line is a
minimum. The method is called least
squares.

Here are some results I obtained (using
Excel) for the population of the United
Kingdom 1850-2009.

P= 214.76t -368651
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I have fitted a straight line with slope
2175.

In the exercises I ask you to do similar
calculations.


