Set Theory & Logic on

Earliest Known Uses of Some of the Words of Mathematics

Earliest Uses of Various Mathematical Symbols

 

This is a list of entries on the Words pages. It is only a rough guide as it is hard to draw a line between general mathematics and set theory and logic. Sy indicates there is related material on to Earliest Uses of Symbols of Set Theory and Logic.  There are also indexes for Calculus and Analysis, Probability & Statistics, Matrices & Linear Algebra and Vector Analysis. For a general perspective on word-formation in mathematics see Mathematical Words: Origins and Sources.

 

Entries

 

 

A – B

 

A

Algebraic Logic

Algorithm

Analysis of Algorithms

Associative

Autological

Axiom

Axiom of Choice

 

 

B

Boolean algebra

Burali-Forti paradox

 

C

 

C

Calculus

Cartesian product

Categorical (axiom system)

Chain

Characteristic function

Church’s thesis

Class

Commutative

Complement

Conjunction Sy

Conservative extension

Continuum hypothesis

Contrapositive

Converse

Corollary

Countable

Covering

 

 

D – E

 

D

Decision problem

De Morgan’s laws

Disjoint

Disjunction Sy

Distributive

Domain

Dummy variable

 

 

 

E

Element Sy

Empty set Sy

Euler diagram

 

 

F – H

 

F

Finitary

Finite character

Function

Formalism

Functor

Fuzzy

 

G

Genetic definition

Genetic method

Gödel’s incompleteness theorem

Grundlagenkrisis

 

H

Hauptsatz

Heterological

Hilbert’s program

Hyperset

 

I – K

 

I

Iff

Implicit definition

Induction

Inductive (partially) ordered set

Infix (notation)

Intersection

Intuitionism

Inverse

 

J

 

 

K

 

 

 

L  - N

 

L

Lemma

Liar paradox

Logic

Logicism

 

 

M

Mathematical Induction

Mathematical Logic

Metamathematics

 

 

 

N

Non-Cantorian

Non-standard analysis

Null class

 

 

O – P

 

O

Omega rule

One-to one correspondence

Onto

 

 

P

Paraconsistent logic

Paradox

Peano’s axioms

Platonism

Poset

Postfix notation

Postulate

Power

Predicate calculus

Prefix

Prenex normal form

Primitive recursive function

Propositional calculus

Propositional function

 

 

Q – R

 

Q

Q. E. D.

Quantifier Sy

 

R

Recursively enumerable set

Reductio ad absurdum

Reflexive

Richard’s paradox

Russell’s paradox

 

 

S

 

S

Sentential calculus

Set Sy

Set theory

Simply ordered set

Structure

Subset

Successive Induction

Symmetric

Symmetric difference

 

 

T

 

T

Theorem

Theory of types

Transfinite

Transitive

Truth set

Truth table

Truth value

Turing machine

Turing test

 

 

 

U – V

 

U

Undecidable

Union

Universe

 

 

V

Venn diagram

 

 

 

 

W – Z

 

W

Well-ordered

Working mathematician

 

 

Z

Zeno’s paradoxes

Zermelo-Fraenkel set theory

Zorn’s lemma


 

John Aldrich, University of Southampton, Southampton, UK. (home). Most recent changes July 2011.